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ABSTRACT 

 

Metacognition is the capacity to evaluate and control one’s own cognitive processes. 

Metacognition operates over a range of cognitive domains, such as perception and 

memory, but the neurocognitive architecture supporting this ability remains 

controversial. Is metacognition enabled by a common, domain-general resource that is 

recruited to evaluate performance on a variety of tasks? Or is metacognition reliant on 

domain-specific modules? This article reviews recent literature on the domain-

generality of human metacognition, drawing on evidence from individual differences 

and neuroimaging. A meta-analysis of behavioral studies found that perceptual 

metacognitive ability was correlated across different sensory modalities, but found no 

correlation between metacognition of perception and memory. However, evidence for 

domain-generality from behavioral data may suffer from a lack of power to identify 

correlations across model parameters indexing metacognitive efficiency. 

Neuroimaging data provide a complementary perspective on the domain-generality of 

metacognition, revealing co-existence of neural signatures that are common and 

distinct across tasks. We suggest that such an architecture may be appropriate for 

“tagging” generic feelings of confidence with domain-specific information, in turn 

forming the basis for priors about self-ability and modulation of higher-order 

behavioral control. 
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Whether a mental process is domain-general (shares resources across many situations 

or tasks) or domain-specific is a broad question that is pertinent to many areas of 

psychology. For instance, it has long been debated whether intelligence relies on a 

single underlying resource (a g factor) or on independent components (Chiappe & 

MacDonald, 2005; Kanazawa, 2004; Kievit et al., 2017). In cognitive neuroscience, 

Duncan and colleagues have proposed that a “multiple demand” system supports 

executive functions across many different tasks (Duncan, 2010). In this article we 

focus on recent research on the domain-generality of neurocognitive substrates 

supporting metacognition. 

 

Metacognition is defined as cognition about cognition – the ability to reflect on, 

monitor and control another cognitive process (Dunlosky & Metcalfe, 2008; Nelson 

& Narens, 1990). In the laboratory, as we will see in more detail below, 

metacognition can be assessed by recording individuals’ judgments of their 

performance on a particular task, such as their confidence in a decision or a judgment 

of whether learning will be successful (a “second-order” judgment). Because 

metacognition is by definition second-order to other cognitive processes, it may 

operate across multiple “domains” of cognition – for instance, one might engage in 

metacognition about percepts, about memories, about decisions, and so forth. 

Progress has been made on understanding the neural basis of metacognition (see 

Fleming & Dolan, 2012 for a review), which will be considered at more length below. 

However, it remains poorly understood as to whether metacognition relies on a 

domain-general resource that is “applied” to the task at hand, or whether different 

metacognitive processes are engaged when evaluating performance in different 

domains (Figure 1A). This article reviews and critically appraises progress on this 

issue. 

 

Measures of metacognition 

 

In order to assess the relationship between metacognition across domains, we require 

metrics of metacognitive ability that are robust and comparable across tasks. Here we 

focus on objective measurement of metacognition from behavioral tasks rather than 

self-report questionnaires. Some second-order judgments are less suitable for cross-

domain comparison because they are inherently domain-specific. For instance, 
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judgments of learning (JOLs) refer directly to the learning process (Arbuckle & 

Cuddy, 1969), and are therefore not applicable when investigating metacognition of 

perception. For this reason comparisons of metacognition across domains have tended 

to focus on retrospective confidence judgments of performance - a judgment of 

confidence that a previous decision involving internal process X was correct, where X 

could refer to any cognitive process, such as perceptual discrimination or memory 

retrieval. Once such judgments have been collected over several trials of a task they 

can be compared to objective accuracy to build up a picture of an individual’s 

metacognitive ability. In general, metacognition is said to be accurate when correct 

decisions are held with high confidence and incorrect decisions are held with lower 

confidence – in other words, metacognitive accuracy refers to the correlation between 

task performance and confidence. The various approaches for characterizing this 

correlation have been comprehensively reviewed elsewhere (Fleming & Lau, 2014). 

 

Figure 1. (A) It remains debated whether metacognition operates as a domain-

general resource applied over cognitive domains (left) and/or whether 

metacognition itself relies on domain-specific components that operate over 

corresponding cognitive domains. (B) Metacognitive bias and metacognitive 

efficiency are two independent aspects of metacognition. Metacognitive bias 

corresponds to an overall tendency to rate confidence higher (right panels) or 

lower (left panels), irrespective of performance. Metacognitive sensitivity 

quantifies the extent to which correct and error trials can be discriminated 

(adapted from Fleming & Lau, 2014). 

 

It is useful to distinguish two aspects of metacognitive judgments – their sensitivity 

and bias. These are illustrated in the cartoon in Figure 1B. Each panel shows example 

probability densities of confidence ratings conditional on correct and incorrect task 

performance. If these distributions are cleanly separated, this implies the subject is 
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able to recognize accurate from inaccurate performance using the confidence scale 

and we would describe them as having a high degree of metacognitive sensitivity. In 

contrast, metacognitive bias refers to an overall level of confidence averaging over 

performance. These aspects of metacognition are theoretically independent. For 

instance, someone who has low overall confidence (low bias) may still be sensitive on 

a trial-by-trial basis to fluctuations in performance (high sensitivity). By applying a 

modification of signal detection theory (SDT), known as “type 2” SDT, it is possible 

to quantify sensitivity and bias of ratings with respect to objective performance 

(Clarke, Birdsall, & Tanner, 1959; Fleming & Lau, 2014; Galvin, Podd, Drga, & 

Whitmore, 2003). 

 

However, when making inferences about processes that are shared or distinct across 

domains, it is important to ensure that estimation of these components of 

metacognition is not confounded by first-order task performance. For instance, we 

might find that metacognitive sensitivity is highly correlated across two unrelated 

tasks, but this correlation would be less interesting if it were simply a consequence of 

first-order performance also being correlated between tasks. Indeed, several measures 

of metacognitive sensitivity (such as area under the type 2 Receiver Operating 

Characteristic curve (AUROC2) and confidence-accuracy correlations) are 

themselves affected by first-order performance (Galvin et al., 2003; Masson & 

Rotello, 2009) – the same individual will likely show greater metacognitive 

sensitivity on an easy task compared to a hard task. If performance is not matched or 

accounted for between conditions, erroneous conclusions may be drawn, for instance 

that a patient group has a deficit in metacognition when such a deficit is instead 

explained by a difference in first-order performance (Figure 2). 
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Figure 2. Top panel: Differences in task performance might produce spurious 

differences in metacognitive sensitivity between groups or task domains. Bottom 

panel: If task performance is matched between domains, differences in 

metacognitive sensitivity are likely to reflect true differences in metacognition. 

 

One elegant solution to the problem of controlling for performance confounds is the 

meta-dô framework developed by Maniscalco & Lau (2012). This approach posits a 

generative model of confidence data within a signal detection theory (SDT) 

framework. Fitting the model to data returns a parameter, meta-dô, that reflects the 

level of first-order performance (known as dô) that would have led to the observed 

confidence rating data under an ideal observer model. Meta-dô can then be compared 

to actual dô (for instance by computing the ratio meta-dô/dô) to give a measure of 

metacognitive efficiency, which quantifies the level of metacognitive sensitivity 

relative to first-order performance. By using metacognitive efficiency as our measure 

of metacognition we can meaningfully compare scores across individuals or task 

domains. Alternatively, if simpler measures of metacognitive sensitivity are 

employed, it is important to ensure that any potential confounds due to differences in 

first-order performance between conditions are examined and accounted for (Figure 

2). 

 

Domain-generality in metacognitive ability (1) – individual differences 

 

A classical approach to studying domain-generality of mental processes is examining 

patterns of individual differences to ask whether variance is shared or distinct across 

tasks. Assuming that our metrics are reliable and free of confounds, cross-correlations 

between domains indicate shared constraints on a particular ability. For instance, if 
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we find that across individuals, faster choice response times are strongly predictive of 

IQ scores, we might conclude that greater processing speed contributes to both 

decision time and intelligence (Ratcliff, Thapar, & McKoon, 2010; Ritchie, Bates, 

Der, Starr, & Deary, 2013). Correlations of metacognitive measures with other stable 

individual differences (such as personality or mental health) may also reveal domain-

general aspects of metacognition. In this section we review studies that have taken 

this approach to investigate domain-general and domain-specific aspects of 

metacognitive efficiency and bias, and provide a formal meta-analysis to quantify 

behavioral evidence for domain-generality. 

 

In the perceptual domain, metacognitive sensitivity (measured as AUROC2) has been 

found to be correlated across individuals for contrast and orientation discrimination 

tasks (Song et al., 2011), despite perceptual thresholds (first-order performance) in 

each case being uncorrelated. Similar results were found when examining 

metacognitive efficiency (meta-dô/dô) correlations across visual, auditory and tactile 

modalities (Faivre, Filevich, Solovey, Kühn, & Blanke, 2018). Tactile metacognitive 

sensitivity (measured using AUROC2) was found to be uncorrelated with 

metacognitive sensitivity on cardiac and respiratory discrimination tasks, despite the 

latter correlating with each other (Garfinkel et al., 2016). Ais and colleagues found 

strong correlations between metacognitive bias (average confidence levels) across 

several perceptual tasks (auditory, luminance and contrast discrimination tasks and a 

“partial report” task which required identification of a letter in a briefly flashed array) 

(Ais, Zylberberg, Barttfeld, & Sigman, 2016). However, they found correlations in 

metacognitive sensitivity (AUROC2) only between auditory and luminance tasks. In 

addition this study identified similar confidence “profiles” for a given individual, 

indicating idiosyncratic and stable patterns of confidence ratings across tasks (Ais et 

al., 2016). 

 

Although these studies explored inter-relationships between metacognition in 

different perceptual modalities, it could be argued that all such tasks belong to a 

broader perceptual domain, but are further in task space from other cognitive domains 

such as memory. Within the memory domain, metacognitive bias, but not 

metacognitive sensitivity (assessed by the degree of match between confidence and 

recall performance), was found to be correlated across face and word recall tasks 
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(Bornstein & Zickafoose, 1999; Sadeghi, Ekhtiari, Bahrami, & Ahmadabadi, 2017; 

Thompson & Mason, 1996; West & Stanovich, 1997) and across a variety of 

judgment-of-learning tasks (Kelemen, Frost, & Weaver, 2000) – albeit in these 

studies first-order performance was not matched across tasks. More recent studies 

have compared metacognition for perception and memory while also matching 

performance: in this case, metacognitive efficiency was correlated between perceptual 

and memory domains (McCurdy, Maniscalco, Metcalfe, Liu, de Lange & Lau, 2013; 

Palmer, David, & Fleming, 2014). Samaha and Postle also found evidence of domain-

generality in metacognitive sensitivity for perceptual discrimination and visual 

working memory (measured using performance-confidence correlations and 

AUROC2), but whether this result reflects generalization beyond perception is 

unclear because perceptual resources may also be required for short-term memory of 

visual orientation (Samaha & Postle, 2017). In contrast, other studies found no 

correlation between metacognitive efficiency across memory and perceptual tasks 

(Baird, Cieslak, Smallwood, Grafton, & Schooler, 2015; Baird, Smallwood, 

Gorgolewski, & Margulies, 2013; Morales, Lau, & Fleming, 2017). These mixed 

findings may be due to differences in metacognition metrics (AUROC2 in Baird et al. 

vs. meta-dô/dô in McCurdy et al. and Morales et al.), and/or differences in task 

requirements (2AFC vs. Yes/No) (Ruby, Giles, & Lau, 2017), as we discuss further 

below. Finally, no correlation was found between metacognitive sensitivity (measured 

using AUROC2) on a visual discrimination task and a task involving mentalizing and 

reasoning (Valk, Bernhardt, Böckler, Kanske, & Singer, 2016) or between 

metacognitive sensitivity on perception, memory and error awareness tasks 

(Fitzgerald, Arvaneh, & Dockree, 2017). 

 

The above studies can be clustered into two main groups: those that examine inter-

correlations between metacognitive sensitivity in different perceptual discrimination 

tasks and those studying correlations between metacognition of recognition memory 

and perception. To assess evidence for domain-generality we conducted a meta-

analysis of cross-domain correlation coefficients for these two study categories 

(Figure 3). From a literature search we identified studies that fell into one of these 

categories and employed signal-detection theoretic measures of metacognition (M-

ratio or AUROC), revealing 12 manuscripts and 19 total independent experiments. 

Effect size (r), sample size (n), and types of cross-domain correlation (memory-
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perception vs. perception-perception) were hand coded. In cases where multiple 

modalities were probed within a sample (e.g., audition, touch, and vision), the ‘multi-

modal’ r-value was calculated as the average R across modalities. Meta-analytic 

effect sizes (cross-domain r) were calculated using a Fisher R-to-Z random effects 

model, implemented in the metafor R-package, version 3.3.2 (Viechtbauer, 2010). 

Specifically, we performed three meta-analyses – one of overall cross-domain 

correlations (n=19), one on cross-domain correlations within the perceptual modality 

(n=9), and another of memory-perception cross-domain correlations (n=10). 

 

We found that across all studies, cross-domain correlations were significantly greater 

than zero (meta-analytic r = 0.27, 95% CI = [0.13, 0.41], p < 0.001) and exhibited 

significant heterogeneity across effect sizes (Q = 50.46, df = 18, p < 0.001, I2 = 

69.7%). This result was primarily driven by medium to strong cross-perceptual 

correlations (meta-analytic r = 0.55, 95% CI = [0.34, 0.76], p < 0.001). Restricting our 

analysis to perceptual effect sizes, we did not observe significant heterogeneity (Q = 

14.49, df = 8, p = 0.07, I2 = 45.4%). In contrast, cross-domain correlations between 

memory and perception-based tasks were not significant (r = 0.09, 95% CI = [-0.02, 

0.21], p = 0.10), and did not show effect heterogeneity (Q = 14.76, df = 9, p = 0.09, i2 

= 38.3%). These results suggest that cross-task correlations in metacognitive ability 

are primarily obtained when examining tasks tapping into the same functional 

modality, i.e. perception (Figure 3). 
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Figure 3. Forest plot for our three meta-analyses examining the meta-analytic 

strength of cross-domain correlations of metacognition. The first focused on 

studies in the perceptual domain (e.g. visual, tactile). The second examined the 

cross-domain correlation of metacognition in perceptual vs. memory-based tasks, 

and the third estimated the overall meta-analytic cross-domain correlation across 

all studies. The results show that metacognitive ability is primarily preserved 

across perceptual tasks, but does not generalize to memory-based tasks. The right 

column indicates the Fisher’s z transformed correlation coefficient. 

 

Such results may initially appear to support a conclusion that memory and perceptual 

metacognition rely on largely separate, domain-specific processes. However one 

potential caveat is that some studies have compared yes-no (Y/N) tasks with 2-

alternative forced choice tasks (2AFC). In 2AFC tasks, a pair of stimuli is presented, 

for instance reporting which of two intervals contains a brighter stimulus. In Y/N 

tasks, a single stimulus is presented which must be classified as a target or lure. 

Metacognition for Y/N and 2AFC tasks may appear different not because of a true 

difference between domains, but because of a difference in the processes that generate 

confidence ratings in the two cases (Ruby et al., 2017). Specifically, previous studies 
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have documented that meta-dô following “no” responses in a Y/N task is substantially 

lower than meta-dô following equivalent “yes” responses (Meuwese, van Loon, 

Lamme, & Fahrenfort, 2014; Kanai et al., 2010), potentially obscuring a latent 

domain-general component (Ruby et al., 2017). In addition, an absence of correlation 

may result from a lack of statistical power rather than a true null effect, particularly 

given the small sample sizes often employed in previous studies. Future studies could 

profitably employ Bayesian statistics to directly assess evidence in favor of the null 

hypothesis when examining cross-domain correlations. 

 

Another candidate explanation for discrepant findings when studying across-domain 

correlations in metacognitive efficiency corresponds to the variety of metrics 

employed to assess metacognitive sensitivity (correlations, AUROC2, meta-dô), and 

the reliability of within-subject measures of metacognition. Metacognitive sensitivity 

is itself a measure of association between two variables (performance and confidence) 

that requires several trials to be estimated with sufficient stability and therefore there 

is inevitable uncertainty in the estimation of within-domain parameters (Fleming, 

2017). This within-subject uncertainty is rarely taken into account in analyses of 

individual differences (although see Samaha & Postle, 2017), which typically rely on 

point estimates such as AUROC2 or maximum likelihood estimates of meta-dô. 

Recently we have developed a Bayesian framework (HMeta-d) for estimating meta-dô 

both at the level of individual subjects and groups of subjects (Fleming, 2017). One 

advantage of this framework for analyses of domain-generality is that it can be 

extended to estimate correlation coefficients between domains. Unlike classic point-

estimate approaches, this ensures that uncertainty in individual metacognitive 

efficiency estimates appropriately propagates through to uncertainty around the cross-

domain correlation coefficient. 

 

This effect can be appreciated in simulations plotted in Figure 4 (code available at 

https://github.com/metacoglab/RouaultDomainReview). Here we generated 

confidence rating data from N=100 simulated subjects across two “domains”. The 

group metacognitive efficiency was set to 0.8 in both domains, and individual subject 

meta-dô/dô values sampled from a bivariate Gaussian distribution with a true 

correlation in metacognitive efficiency between domains of 0.5. We sampled 

confidence rating counts for known meta-dô/dô values using the metad_sim function 
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from the HMeta-d toolbox (https://github.com/metacoglab/HMeta-d), keeping 

confidence rating criteria fixed across domains and subjects. The number of trials per 

subject differed between simulations (50 vs. 400). The model outputs a posterior 

belief distribution over the across-domain correlation coefficient. It can be seen that 

as the number of trials per subject increases (i.e. the certainty associated with 

individual meta-dô estimates goes up, lower panel in Figure 4), we can be more 

certain about the presence of a domain-general correlation (narrower posterior 

density). We recommend applying such multi-level models when analyzing individual 

difference correlations to ensure this parameter uncertainty is appropriately taken into 

account. 

 

Figure 4. Simulations of hierarchical meta-dô model (HMeta-d) estimation of the 

covariance between metacognitive efficiencies for 100 simulated subjects with an 

average meta-dô/dô ratio of 0.8. Upper panels correspond to 50 trials per subject, 

lower panels to 400 trials per subject. The “ground truth” correlation coefficient 

in both cases was 0.5, and in both cases we recovered a significant correlation 

between point estimates obtained using single-subject maximum likelihood. 

Notably, the posterior over the correlation coefficient is narrower around the true 

value (shown by the dotted vertical line) when there are more trials per subject 

(lower row), reflecting increased certainty in subject-level meta-d' parameter 

estimation. 
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Other studies have investigated relationships between metacognition and other aspects 

of personality and executive function which, if found, would lend support to a 

domain-general metacognitive contribution to metacognition. For instance, factors 

such as general intelligence or motivation to engage with a task could affect 

metacognition over multiple domains. However, if  such general factors are 

significantly altered, it is unlikely that metacognitive processes would be selectively 

affected while also leaving first-order performance spared; for instance, an altered 

ability to follow task instructions following a prefrontal cortex lesion is likely to 

affect both task performance and metacognitive evaluation. The integrity of these 

“global” factors can thus be seen as a necessary but not sufficient condition for 

enabling metacognition. Notably however, despite both relying on aspects of higher 

cognition, we have found that over several datasets perceptual metacognitive 

efficiency is not related to measures of fluid intelligence (Fleming, Huijgen, & Dolan, 

2012; Palmer et al., 2014), even when such correlations were examined in a large-

scale dataset of ~1000 individuals (Rouault, Seow, Gillan and Fleming, 2018). Such 

independence may be due to fluid intelligence relying on posterolateral frontal and 

parietal “multiple demand” regions (Woolgar et al., 2010), whereas metacognition has 

been linked to anterior prefrontal regions, as considered in more detail below.  

 

In summary, analyses of individual differences in metacognitive efficiency indicate 

the presence of domain-general contributions to confidence judgments across distinct 

perceptual discrimination tasks. Such variation in metacognition is isolated from 

variation in first-order performance. However it remains unclear whether a shared 

resource supports metacognitive efficiency across more distant domains, such as 

recognition memory and perceptual discrimination. One important consideration in 

conducting such cross-domain correlation analyses is to ensure that uncertainty in 

estimation of metacognition within a particular domain is appropriately propagated to 

the analysis of between-domain correlations, which is now possible within 

hierarchical Bayesian frameworks. Taken together these findings also raise the issue 

of how to define a separation between domains, and whether the notion of domain 

should instead be considered as existing along a continuum or gradient (see 

“Computational processes” section below). Furthermore we should remain mindful 

that the architecture of metacognition (and therefore any shared variance between 

different tasks) may well be organized along different lines than the cognitive 
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processes being monitored, and which are typically compared in the laboratory (e.g. 

perception, memory). 

 

Domain-generality in metacognitive ability (2) – neuropsychology 

 

The study of individual differences identifies shared variance in behavioral 

performance across a large number of healthy individuals. In contrast, 

neuropsychology seeks to identify dissociations between abilities induced by patterns 

of brain damage. Classic studies by Shimamura and colleagues revealed that 

metamemory abilities (such as feeling-of-knowing or judgments of learning) are 

selectively impaired following frontal lesions (Janowsky, Shimamura, & Squire, 

1989; Shimamura & Squire, 1986). Metamemory evaluation has itself been divided 

into distinct judgment types (see Chua et al., 2014, for a review). A key distinction is 

that judgments can be either prospective, occurring prior to memory retrieval, or 

retrospective. Prospective judgments include feeling of knowing (FOK), the 

likelihood of recognizing an item that currently cannot be recalled, and judgment of 

learning (JOL), a belief during learning about the success of subsequent recall. More 

recent studies indicated such lesion deficits may not apply to all forms of 

metamemory judgment. For instance, two independent studies found that damage to 

the medial prefrontal cortex was associated with decreased prospective feeling-of-

knowing accuracy but intact retrospective confidence judgments (Schnyer et al., 

2004) and judgments of learning (Modirrousta & Fellows, 2008). The reverse 

dissociation was reported by Pannu and Kaszniak, who found that deficits in 

retrospective confidence judgments were associated with lateral frontal lesions (Pannu 

& Kaszniak, 2005). 
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Figure 5. Different methodologies for quantifying brain structure and function 

shed light on the underpinnings of metacognition across domains. (A) Human 

subjects with anterior PFC lesions (aPFC) were found to have reduced 

metacognitive efficiency on a perceptual but not a memory task (lower panel), 

compared to temporal lobe lesion patients (TL) and healthy controls (HC), despite 

matched performance and task difficulty (upper panel; reproduced from Fleming 

et al., 2014). (B) Individual differences in metacognitive efficiency for perception 

were found to correlate with aPFC gray matter volume, whereas individual 

differences in metacognitive efficiency for memory were found to correlate with 

medial parietal cortex (precuneus) gray matter volume. Structural variation in 

each of these regions was in turn positively correlated across participants, 

translating into a behavioral correlation of metacognitive efficiencies between 

domains (reproduced from McCurdy et al., 2013). (C) Multivariate analyses of 

human neuroimaging data revealed widespread classification of confidence level 

in dACC/pre-SMA, vmPFC and striatum that generalized across domains 

(yellow). In contrast, domain-specific patterns of confidence-related activity were 

identified in right lateral aPFC (ROI analysis not shown; reproduced from 

Morales et al., 2018). 

 

Fewer studies have taken a neuropsychological approach to ask whether 

metacognitive deficits are shared across multiple task domains. Fleming et al. studied 

three groups of subjects matched for age and IQ – a healthy control group, a group 

with anterior prefrontal cortex (aPFC) lesions, and a group with temporal lobe lesions 

(Fleming, Ryu, Golfinos, & Blackmon, 2014). Each participant completed both a 
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recognition memory task with word stimuli and a perceptual discrimination task about 

the relative density of two dot patches. In both tasks retrospective confidence ratings 

were elicited on a trial-by-trial basis, allowing assessment of meta-dô for each 

subject/task domain. A selective deficit in metacognitive efficiency (meta-dô/dô) for 

perceptual discrimination was observed in the aPFC group (Figure 5A) despite 

equivalent first-order performance and metacognitive bias. Such a result is consistent 

with a contribution of aPFC to metacognition of perceptual decision-making (Allen et 

al., 2017; Fleming, Weil, Nagy, Dolan, & Rees, 2010; Yokoyama et al., 2010), but 

suggests other brain regions may be sufficient to support intact metacognition of 

recognition memory (Baird et al., 2013; McCurdy et al., 2013). Notably, all patients 

were tested in a post-acute phase of their lesion, so it is possible that an early domain-

general deficit may have been observed sooner after surgery. More generally, 

neuroplasticity and reorganization following lesions make it difficult to draw strong 

conclusions about the typical functional anatomy of metacognition from lesion studies 

alone (Lemaitre, Herbet, Duffau, & Lafargue, 2017). 

 

Domain-generality in metacognitive ability (3) – neuroimaging 

 

Behavioral and neuropsychological data can inform on whether a mental process 

relies on a shared resource, but provide less insight into the mechanisms that underpin 

this resource. As noted above, a common resource may be involved but not be 

detected due to domain-specific unreliability in the measurement of metacognition. 

Conversely, a domain-general pattern may be driven by a third factor that affects 

domain-specific processes in equal measure, such as stress (Reyes, Silva, Jaramillo, 

Rehbein, & Sackur, 2015) or fatigue (Maniscalco, McCurdy, Odegaard, & Lau, 

2017). 

 

Several recent studies have focused on the neural basis of human metacognition, 

which have been reviewed at length elsewhere (Fleming & Dolan, 2012). Briefly, in 

concordance with the neuropsychological literature highlighted above, anatomical 

(Allen et al., 2017; Fleming et al., 2010; McCurdy et al., 2013) and functional (Baird 

et al., 2013; Cortese, Amano, Koizumi, Kawato, & Lau, 2016; De Martino, Fleming, 

Garrett, & Dolan, 2013; Fleck, 2006; Fleming et al., 2012; Hilgenstock, Weiss, & 

Witte, 2014; Yokoyama et al., 2010) neuroimaging data indicate that a frontoparietal 



 17 

network contributes to metacognitive estimates of task performance across a range of 

tasks. Within this network, electrophysiological studies in humans have focused on 

the role of the posterior medial frontal cortex (pMFC) and associated error-related 

negativity in performance monitoring (Gehring et al., 1993; Dehaene et al., 1994). 

More recently, anterior PFC has also been implicated in supporting explicit 

metacognitive judgments, leading Fleming and Dolan to propose that connectivity 

between interoceptive cortices (cingulate and insula) and anterior PFC may underpin 

the fidelity of explicit metacognition (Fleming & Dolan, 2012). Non-human 

electrophysiological work has also identified a key role for frontoparietal areas in 

confidence formation. In particular, recordings in monkey lateral intraparietal cortex 

(LIP) indicate that variability in LIP firing rates is predictive of both decisions and 

decision confidence (Kiani and Shadlen, 2009; Hanks et al., 2011). Furthermore, 

activity in rat orbitofrontal cortex carries signals related to decision confidence in a 

perceptual discrimination task (Kepecs et al., 2008). However, the distinct 

computational roles of these regions, and whether such neural substrates of 

confidence are shared or distinct across tasks remains unclear. In what follows we 

selectively focus on studies which directly compare neural correlates of 

metacognition across task domains using neuroimaging techniques in humans. 

 

An intriguing example of a domain-general pattern in behavior that could be 

explained by domain-specific neural resources was reported by McCurdy et al. 

(2013). In this study, the same participants carried out 2AFC perceptual 

discrimination (Gabor contrast discrimination) and recognition memory judgments 

together with confidence ratings. As noted above, this study obtained behavioral 

evidence for a domain-general correlation between metacognitive abilities across the 

two domains. However, each participant also underwent a structural MRI to enable 

analysis of individual variation in grey matter volume across the cortex. It was found 

that metacognitive efficiency (meta-dô/dô) for perception correlated with grey matter 

volume in the anterior prefrontal cortex (Figure 5B; see also Allen et al., 2017; 

Fleming et al., 2010), whereas meta-dô/dô on the memory task correlated with grey 

matter volume in the precuneus. Using structural equation modeling, the best model 

of the data was one in which the structure of two domain-specific regions was 

correlated across individuals, thereby explaining a domain-general finding in behavior 

via the coupling of two domain-specific resources. This example shows how 
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neuroimaging data can shed additional light on the cognitive architectures that 

determine individual differences in metacognition. 

 

Other studies combining analyses of individual differences with structural and 

diffusion imaging measurements have also provided evidence for the involvement of 

distinct neural structures in metacognition across domains. Metacognitive accuracy on 

a visual task was shown to correlate with white matter microstructure underlying the 

ACC, whereas metacognitive accuracy for a memory task correlated with white 

matter underlying the inferior parietal lobule (IPL) (Baird et al., 2015). In analysis of 

resting state fMRI data, connectivity between ACC and anterior PFC was related to 

more accurate perceptual metacognition judgments, whereas increased connectivity 

between precuneus, IPL and anterior PFC predicted better metamemory (Baird et al., 

2013). Furthermore, cortical thickness mapping revealed domain-specific substrates 

structurally related to metacognition of perception (right medial PFC) vs. mentalizing 

(bilateral PFC, temporo-parietal cortex, posterior medial parietal cortex) (Valk et al., 

2016). 

 

In perceptual decision-making tasks, classical univariate analyses of fMRI BOLD 

signal reveal a negative parametric relationship between confidence reports and 

activity in posterior medial frontal cortex (pMFC, encompassing dorsal anterior 

cingulate cortex and pre-supplementary motor area) (Fleck, Daselaar, Dobbins, & 

Cabeza, 2006; Heereman, Walter, & Heekeren, 2015; Morales et al., 2018), which are 

also observed in the memory domain (episodic retrieval) (Fleck et al., 2006). In 

pMFC and vmPFC, multivariate fMRI analyses revealed that it was possible to 

predict confidence in a memory task from patterns decoded in a perceptual task 

matched for stimulus and task requirements, and vice-versa (Figure 5C), suggesting 

that confidence covaries with task-independent neural representations (Morales et al., 

2018). In contrast, right lateral aPFC instead showed significant decoding effects 

within- but not across-domain. This domain-specific neural representation of 

confidence suggests that lateral aPFC may “tag” metacognitive representations with 

task-specific information, which could be particularly relevant for future meta-level 

control decisions such as which task to engage in next.  
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We note that some observations of domain-generality in neural data may be due not 

only to confidence but other correlated variables, for instance decision time, which 

has been proposed as a relevant input for a confidence computation (Kiani, Corthell, 

& Shadlen, 2014), and expected value. Some studies of confidence explicitly modeled 

reaction times in their fMRI analysis (Fleck et al., 2006; Gherman et al., 2017; 

Lebreton et al., 2015), whereas others did not (Heereman et al., 2015; Morales et al., 

2018), and it is not straightforward to determine whether decision time should be 

treated as a confound or a relevant variable of interest for studies of the neural basis 

of metacognition. Notably, regions often implicated in encoding expected value such 

as ventral striatum and vmPFC (Clithero and Rangel, 2013) are also often found to 

scale with confidence in perception, value and memory domains (De Martino et al., 

2013; Gherman & Philiastides, 2017; Lebreton, Abitbol, Daunizeau, & Pessiglione, 

2015; Morales et al., 2018), suggesting that being confident is valuable, and/or that 

when highly confident, subjects expect imminent reward. The fact that a majority of 

studies have not dissociated confidence from implicit expected value potentially 

explains these pervasive, domain-general activations. Future studies are required to 

directly investigate a putative commonality of confidence and value representations, 

and to separate the component inputs to confidence formation (Bang & Fleming, 

2018). 

 

Previous studies have suggested that involvement of the precuneus (medial parietal 

cortex) is specific to metamemory judgments. Indeed individual metacognitive 

efficiency in a memory task, but not in a perceptual task, was found to correlate with 

gray matter volume in the precuneus (McCurdy et al., 2013), and resting-state 

functional connectivity revealed that better metamemory was associated with 

increased connectivity between medial aPFC and precuneus (Baird et al., 2013). In 

addition, TMS application over precuneus impaired metacognitive efficiency for 

memory but not perception, both measured as meta-dô - dô (Ye et al., 2018), and 

univariate fMRI activation in precuneus was selectively increased during 

metacognitive judgments of memory, but not perception (Morales et al., 2018). 

However, a relationship between precuneus grey matter volume and metacognitive 

efficiency has also been detected in a perceptual decision-making task, albeit at an 

uncorrected whole-brain threshold (Fleming et al., 2010). Moreover, the same region 

was found to correlate negatively with confidence level in a visual motion-
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discrimination task (Heereman et al., 2015). Lastly, using multivariate decoding of 

fMRI activity, Morales et al. found that classification of high vs. low confidence trials 

in precuneus generalized across memory and perception domains (Morales et al., 

2018). Together these results suggest that precuneus involvement may not be specific 

to metamemory. Interestingly, recent results suggest that the vividness of episodic 

memory was tracked by precuneus activity over and above memory precision and 

retrieval success (Richter, Cooper, Bays, & Simons, 2016). To the extent to which 

similar appraisals of vividness feed into the formation of perceptual confidence, this 

may explain the domain-general nature of findings in this region. An interesting 

alternative possibility is that precuneus is engaged when subjects leverage prior 

beliefs about self-ability to compute confidence in perception, hence needing to 

retrieve global beliefs about past experience from memory (see also Figure 6). 

 

In summary, neuroimaging studies indicate a more nuanced picture than studies of 

behavior or individual differences, which have tended to argue for either domain-

specific or domain-general aspects of metacognition. It is possible to reconcile these 

perspectives by demonstrating that both domain-specific and domain-general signals 

co-exist in the human brain, and that there may exist a gradient in which some tasks 

(such as different types of perceptual judgment) are more likely to rely on shared 

circuitry for metacognitive evaluation than others. In the next section we attempt to 

formalize these ideas through the lens of computational modeling. 

 

 

Computational processes supporting metacognition across domains 

 

Models of confidence formation 

 

The simplest first-order models of confidence formation (such as signal detection 

theory) assume that the internal states supporting decisions and confidence estimates 

are identical. Such frameworks predict that any covariation between metacognitive 

efficiency across domains should be accompanied by covariation in lower-level 

performance, and struggle to accommodate the evidence reviewed above that 

confidence can be selectively altered or impaired independently of task performance 

(see also Cortese et al., 2016; Lak et al., 2014; Rounis, Maniscalco, Rothwell, 
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Passingham, & Lau, 2010). An extension to first-order models of confidence 

introduces post-decisional processing, thus explaining additional variability in 

confidence estimates without altering the fidelity of first-order performance (Navajas 

et al., 2017; Pleskac & Busemeyer, 2010; van den Berg et al., 2016). A somewhat 

more elaborate but flexible model is a “second-order” computation of confidence 

(Fleming & Daw, 2017). In the second-order framework, the efficacy of actions is 

monitored based on higher-order knowledge of the reliability of the decision-making 

system. 

 

A second-order account provides a natural perspective on findings of domain-

generality in metacognition. Similar circuits for second-order inference may be 

engaged across different domains to the extent to which their lower-level states and 

actions are similar (the “inputs” and “outputs”; see Figure 6). To take a concrete 

example, suppose that we are comparing metacognitive efficiency for a visual and 

auditory discrimination task, both requiring a right-handed button press to indicate the 

first-order judgment. While in each task, “state” estimation may depend on distinct 

(visual and auditory) neural circuitry; actions are supported by a common output (the 

left motor cortex). This commonality in response mapping may be sufficient to induce 

commonalities in second-order inference, leading to the observations of domain-

general confidence signals in neuroimaging data. Such a pattern was observed by 

Faivre and colleagues, who suggest, “the supramodality of metacognition relies on 

supramodal confidence estimates and decisional signals that are shared across sensory 

modalities” (Faivre et al., 2018). 
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Figure 6. Theoretical framework for metacognition, grounded in models of 

sensory systems. The two boxes represent domains-specific computations solving 

two different tasks such as visual and auditory discrimination. Decision-making 

proceeds in a domain-specific fashion following the principles of Bayesian 

inference, while a metacognitive layer computes confidence (= P(correct|data)) in 

each task. Metacognitive inference is itself under the control of priors that may be 

updated based on previous experience. 

 

However, current computational models of confidence are relatively narrow in scope, 

focusing on experimentally controllable states and actions. To the extent that other 

internal variables covary with expected success, these may also become relevant 

“inputs” for subjective confidence. For instance, response times can provide a proxy 

for decision time, and be subsequently available to the agent for computing 

confidence (Benjamin, Bjork, & Schwartz, 1998; Kiani et al., 2014). However for 

response times to be informative, one needs to have an estimation of the expected 

level of performance on the task, for instance in the form of a running average over 

decision accuracy in a given experimental condition. If expected performance is 

variable within a task, or if it varies significantly across tasks, response times might 

be less useful as proxies for inferring decision accuracy and hence confidence. For 

example, in situations where noise in the stimulus induces a deviation from the 

expected performance level, the expected mapping between confidence and decision 

time may break down (Rahnev, Maniscalco, Luber, Lau & Lisanby, 2011; Fetsch, 

Kiani, Newsome & Shadlen, 2014; Zylberberg, Fetsch & Shadlen, 2016; Peters et al., 

2017). Similarly, interoceptive states may provide additional proxies when evaluating 
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self-performance (Allen et al., 2016; Chua & Bliss-Moreau, 2016). This perspective 

on the formation of confidence in decision-making converges with established 

“inferential” or cue-based models of confidence formation in the metamemory 

literature, which suggest that cues such as accessibility (the degree of partial 

knowledge about the target) contribute to confidence estimates (Koriat and Levy-

Sadot, 2001). Similarly, familiarity with the stimuli (De Martino et al., 2013), and 

volatility/variability in stimulus evidence (Zylberberg et al., 2016; Meyniel, 

Schlunegger & Dehaene, 2015) also inform confidence. To the extent that some cues, 

such as response time or fluency, are useful across many different tasks, they may 

provide domain-general inputs to confidence and metacognition (Alter and 

Oppenheimer, 2009; Boldt, de Gardelle & Yeung, 2017). 

 

How does confidence guide behavior? 

 

If confidence constitutes a proxy for the probability of success in a task (Peirce and 

Jastrow, 1884; Pouget, Drugowitsch, & Kepecs, 2016), it may act as a “common 

currency” signal for estimating and comparing the relative likelihood of success 

between different tasks (de Gardelle & Mamassian, 2014). Such a common currency 

would be particularly useful when deciding on which tasks or goals to pursue in the 

future, especially when external feedback is unavailable. For instance when choosing 

a career, it would be advantageous to internally evaluate and compare our 

performance or skill in different potential jobs. The existence of a common currency 

for confidence is supported by studies showing that subjects are able to compare 

confidence across visual and auditory tasks with the same precision as when 

comparing two trials within the same task (de Gardelle & Mamassian, 2014; de 

Gardelle, Le Corre, & Mamassian, 2016). 

 

The notion that confidence may be compared between task domains to facilitate 

flexible decision making is consistent with the existence of both domain-general and 

domain-specific signatures of confidence in neuroimaging data reviewed above. A 

midline network with hubs in pMFC and vmPFC may provide a nexus for monitoring 

arbitrary task-sets. In contrast, task-specific confidence representations in lateral 

aPFC may allow the hierarchical control of decision-making in situations in which 

subjects need to regularly switch between tasks or strategies on the basis of their 
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reliability (Donoso, Collins, & Koechlin, 2014; Morales et al., 2018). However we 

note that the ability to compare confidence between domains does not itself imply that 

the representation of confidence at the neural level is domain-general, and more 

investigation is needed into neural signals that support such cross-task comparisons.  

 

Another intriguing possibility is that the existence of midline hubs for confidence 

formation leads to domain-general representations of confidence which in turn act as 

priors on confidence in other domains. In behavioral studies, a confidence “leak” has 

been identified between a color and a symbol discrimination task, where confidence 

in one task influences confidence in the other regardless of actual performance. 

Notably, the ability to resist such leakage was positively correlated with lateral aPFC 

gray matter volume across subjects (Rahnev, Koizumi, McCurdy, D’Esposito, & Lau, 

2015). It is important however to distinguish the notion of confidence leak (the 

temporal autocorrelation of confidence ratings when several tasks are interleaved) 

from metacognitive bias (the overall tendency to rate confidence higher or lower 

irrespective of performance). A larger confidence leak across trials is not necessarily 

linked to a higher or a lower metacognitive bias, but confidence leak may represent a 

mediating factor in explaining why metacognitive bias often generalizes across tasks 

(Baird et al., 2013; Ais et al., 2016). In addition, if confidence leak is large, 

confidence may become more loosely coupled to current performance in tasks in 

which autocorrelations in stimuli are absent, which could in turn decrease 

metacognitive efficiency. However, it remains to be explored whether confidence leak 

extends across task domains beyond perception. It could be that some domains are 

more susceptible to leak than others. 

 

Ultimately, to understand the structure of metacognition across task domains we 

should aim to understand what functions metacognition provides to the system (the 

computational level in Marr’s taxonomy). The formation of accurate beliefs about 

performance is useful for learning, cognitive control and for social interaction (such 

as when communicating confidence to others) (Bang et al., 2017; Donoso et al., 

2014). But when is it advantageous to share this computation across modalities or 

inputs? We can think of two possible reasons. Firstly, as stated above, if tasks are 

composed of arbitrary state-action mappings then it may be more computationally 

efficient to infer performance in a global, task-independent frame of reference, for use 
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in control of future behavior (Donoso et al., 2014). Secondly, inferences about 

performance in one domain may be useful as priors for performance in other domains 

to the extent they share instrumental characteristics. For instance, if I infer that I am 

very skilled at skiing, I might infer that I would also be good at similar sports such as 

ice-skating, but, on this basis, it would not be wise to also think I will be able to 

remember my to-do list. In other words, it may be useful to generalize confidence 

level across tasks according to their distance in task space. Conversely, 

overgeneralization might be maladaptive, and the extent of metacognitive 

generalization may itself constitute a stable individual difference. For example, 

people with depression tend to generalize more strongly from poor performance in 

one domain to other domains, in turn reinforcing a lower level of self-esteem and 

poorer self-efficacy that cuts across various areas of life (Bandura, 1977; Elliott et al., 

1996; Stephan et al., 2016). 

 

Implications of domain-specific alterations in metacognition for clinical 

populations 

 

The study of metacognition provides an experimental window into our subjective 

estimates of our internal states. The explanatory potential of metacognition for 

mechanisms of pathogenesis and maintenance of mental illness is therefore 

considerable, and metacognitive deficits might be usefully measured in the clinic to 

guide assessment and management (Wells et al., 2012). Dissecting computational 

mechanisms supporting metacognitive evaluation could permit development of 

behavioral and neural interventions to modulate and restore more accurate self-

evaluation (Hauser et al., 2017; Moro, Scandola, Bulgarelli, Avesani, & Fotopoulou, 

2015; Nair, Palmer, Aleman, & David, 2014; Paulus, Huys, & Maia, 2016).  

 

Domain-general beliefs about self-abilities are systematically lowered in depressed 

and anxious patients, and form a promising target for therapy (Bandura, 1977; Wells 

et al., 2012). One recent theory specifies a central role for metacognition in the 

computational etiology of such beliefs (Stephan et al., 2016). Briefly, symptoms of 

fatigue and depression are understood as sequential responses to pervasive 

“dyshomeostasis” – chronically enhanced surprise about internal bodily signals. This 

dyshomeostasis is monitored by a domain-general metacognitive layer that 
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downgrades beliefs about the brain’s capacity to regulate performance on a range of 

tasks (self-efficacy beliefs). Recently we have systematically investigated the relation 

between subclinical psychiatric symptoms and metacognitive bias and efficiency in a 

large general population sample, finding dissociable relationships between 

psychopathology and metacognition in the absence of any links to first-order 

performance on a perceptual decision-making task (Rouault et al., 2018). A symptom 

dimension related to anxiety and depression was associated with lower metacognitive 

bias (lower confidence level) and heightened metacognitive efficiency, whereas a 

dimension characterizing compulsive behavior and intrusive thoughts was associated 

with higher metacognitive bias and lower metacognitive efficiency. Metacognitive 

bias has also been linked to trait optimism (Ais et al., 2016), which is intriguing as in 

this study the questionnaire was administered long after the experiment, suggesting a 

stable confidence level that transcends testing sessions. 

 

In contrast, domain-specific deficits in metacognition of perception may play a role in 

the formation of hallucinations in psychosis (Klein, Altinyazar, & Metz, 2013; Moritz 

et al., 2014). Inaccurate metacognition for memory ability might explain symptoms of 

functional memory loss, a problem seen commonly in memory clinics (Stone et al., 

2015) and account for why people with Alzheimer’s disease often do not 

acknowledge their memory deficits (as evaluated with anosognosia questionnaires 

(Orfei et al., 2010); or objective tests of metamemory performance (Cosentino, 

Metcalfe, Butterfield, & Stern, 2007)). It remains to be explored how metacognitive 

efficiency as studied in laboratory tasks relates to real-world metacognition, but a few 

studies hint at such a link. For instance, participants with a higher level of 

metacognitive efficiency (perceptual meta-dô/dô) were perceived by their informants 

(e.g. relatives) to have fewer problems with attentional control in everyday life 

(Fitzgerald et al., 2017). Another study in older participants found that 

experimentally-measured metacognition (error awareness in a Go/NoGo task) 

correlated with error monitoring deficits in everyday life (Harty, O'Connell, Hester & 

Robertson, 2013). 

 

Some illnesses might appear to co-occur with a generalized metacognitive impairment 

that underpins multiple problems or leads to severe deficits in daily functioning. In 

some situations, this metacognitive deficit is regarded as central to the mental 
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disturbance, such as a lack of insight common in some mental illnesses (David, 1990). 

For instance, patients with neurological disease and impaired knowledge of their 

disease (a symptom known as anosognosia) might be viewed as having a prima facie 

disturbance in metacognitive efficiency, although such a hypothesis remains to be 

directly tested. Strikingly, full insight often does not return despite overwhelming 

evidence of the neurological deficit (Cocchini, Beschin, Fotopoulou, & Sala, 2010; 

Fotopoulou et al., 2008). In the example of anosognosia for hemiplegia, a deficit in 

metacognition generalized across cognitive domains yet specific to the body part in 

question could go some way to explain this. 

 

Initial findings of specific deficits in metacognition in neuropsychiatric conditions 

have tended to focus on specific domains of processing (such as memory in 

Alzheimer’s disease) and it remains unknown whether these deficits generalize to 

other domains. Approaches to tackling this question are synergistic with 

transdiagnostic perspectives of psychopathology emerging in neuroscience (Barch, 

2017; Rouault et al., 2018). Greater knowledge of the relationship between patterns of 

metacognitive deficits and individual neuropsychiatric profiles may eventually allow 

development of personalized therapeutic approaches and suggest pathways to train 

resilience to mental illness (Moro et al., 2015; Paulus et al., 2016). 

 

Conclusions and future directions 

 

Here we have reviewed the recent literature comparing the neurocognitive 

architecture of metacognition across domains. We have distinguished between the 

constructs of metacognitive efficiency (one’s sensitivity to fluctuations in task 

performance) and metacognitive bias (one’s overall confidence level, irrespective of 

performance). We have considered the importance of taking into account variations in 

task performance when measuring metacognition to allow meaningful comparisons 

across domains. In particular, it is critical in future studies match task and stimulus 

characteristics for across-domain comparison (e.g. Y/N vs. 2AFC). Finally, the use of 

a hierarchical Bayesian framework allows uncertainty in metacognitive efficiency 

parameters to be taken into account when examining correlations across domains 

(Fleming, 2017). 
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Our review of neuroimaging studies indicates a more nuanced picture of domain-

generality than studies of behavior or individual differences, which have tended to 

argue for either domain-specific or domain-general aspects of metacognition, but not 

both. Recent studies suggest that both domain-specific and domain-general signals co-

exist in the human brain, and that there may exist a gradient in which some tasks 

(such as different types of perceptual judgment) are more likely to rely on shared 

circuitry for metacognitive evaluation than others. Finally, we have highlighted the 

utility of computational models in providing a framework for understanding how 

confidence is formed across different tasks, and why it might be useful to maintain 

confidence in a common currency when switching between tasks. We suggest that the 

formation of confidence in one domain may provide useful priors on confidence 

formation in other domains. Notably the extent of such generalization itself could 

represent an individual difference, with extreme over-generalization possibly 

contributing to pervasive low self-efficacy often seen in depression and anxiety 

disorders. 
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